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The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and
it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of
friction and external load are taken into account, and it is shown that the pinion can do work against loads of
up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram
for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic
behavior in a large part of the parameter space.
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As technological advances lead to the miniaturization of
mechanical devices, engineers face new challenges that are
brought about by the fundamentally different rules that apply
at small scales. One of the biggest problems in small ma-
chines is the excessive wear of the many surfaces that work
in contact with each other, which severely constrains the du-
rability of such machine parts �1�. A particularly attractive
idea for overcoming this problem might be to try and exploit
the Casimir effect �2,3� to transduce mechanical forces at
small scales between different machine parts that do not have
contact with each other. While the classic normal Casimir
force between planar boundaries might not be well suited to
this task, the lateral Casimir force between corrugated
surfaces—which has been predicted �4� and observed �5�
recently—might be a better candidate. In an attempt along
these lines, we studied the feasibility of a rack and pinion
without contact as a mechanical transducer and found that
the coupling provided by the lateral Casimir force can make
the pinion stay locked in with the rack up to surprisingly
large velocities even while doing work against an external
load �6�.

The coupling provided by Casimir force between machine
parts is nonlinear and could lead to complicated dynamics as
already demonstrated by Chan and collaborators using the
normal Casimir force �7�. This implies that any experimental
realization of such force transduction mechanisms should be
carefully guided by theoretical studies of the phase behavior
of the system in the space of tunable parameters. For ex-
ample, nonlinear coupling could very easily lead to chaos,
which is presumably unwanted in such cases and should thus
be avoided.

It might also be possible to use the nonlinear properties to
our advantage. A particularly interesting case is the possibil-
ity of producing a net directed output motion �which is non-
compact in the parameter space� by using a periodic �com-
pact� input motion. This problem is analogous to swimming
�8� and somewhat related to fluctuation-induced ratchets �9�.

While we are primarily interested in directed motion induced
by a static Casimir force, we note that a dynamic Casimir
force �4,10� can also generate motion by controlled emission
of photons �11� and getting propulsion from the back-
reaction, as exemplified by the vacuum “flying carpet” de-
sign proposed in Ref. �12�.

Here we study the dynamics of a pinion that is kept at a
distance from a vibrating rack, as shown in Fig. 1. The two
parts are coupled by the lateral Casimir force between the
neighboring surface areas, which is a nonlinear coupling
reminiscent of the Josephson coupling in superconductor
junctions �4�. We focus on the case of sinusoidal corruga-
tions with a single wavelength and show that it is possible to
get a rectified motion of the pinion. This is a manifestation of
a spontaneous symmetry breaking in the system, which is
due the inherent nonlinear structure of the dynamics. The
average pinion velocity of the rectified motion takes on dis-
crete values and is set by the wavelength of the corrugation �
and the frequency of vibration. We have also observed that
the system shows a chaotic behavior in a large part of the
parameter space. We have studied the effect of an external
load and found an upper limit for the load it can work against
which is set by the amplitude of the lateral Casimir force. We
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VP y = yp cos(ωpt + φp)

FIG. 1. The schematics of the noncontact rack and pinion, with
the rack vibrating laterally. Both the rack and the pinion have sinu-
soidal corrugations of wavelength �. The rectified motion of the
pinion will manifest itself in a positive average pinion velocity VP,
while working against an external load W.
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note that a similar study to ours has been recently performed
by Emig, in which he considers vibrations at the normal
distance between otherwise stationary corrugated surfaces
�13�.

If two corrugated surfaces are placed parallel to each
other, they experience a lateral Casimir force that tends to
displace them so that their “cogs” will face each other to
minimize the Casimir energy. The force exerted on the lower
plate reads �4�

Flateral = − F sin�2�

�
�x − y�� , �1�

where x−y is the lateral relative displacement, � is the cor-
rugation wavelength of the two surfaces, and F is the ampli-
tude �see below� �5,14�. In the setup shown in Fig. 1, we are
interested in the dynamics of the pinion of radius R which is
subject to a net torque RFlateral due to the lateral Casimir
force, in addition to other forces such as an external load W.
We can write the equation of motion for the coordinate x
=R� �� representing the rotation dynamics� as

I

R

d2x

dt2 = − RF sin�2�

�
�x − y�� −

�

R

dx

dt
− rW , �2�

where I is the moment of inertia about its major axis, � is the
rotational friction coefficient, and r is the torque arm for the
external load.

We can study the above nonlinear equation in the phase
plane �u ,v= u̇� where u�2��x−y� /� and the rescaled time �
is measured in units of T=�I� / �2�FR2�: namely, t=T�. We
consider harmonic motion of the plate, i.e.,

y = yp cos��pt + �p� , �3�

and rewrite Eq. �2� as

ü = − sin u − 	u̇ − w + ys cos��s� + �s� , �4�

where 	=T� / I, w=rW / �RF�, �s=�pT, and

ys = 	 yp�pI

FR2 
��p
2 +

�2

I2�1/2

, �5�

�s = �p − tan−1	 �

I�p

 . �6�

The dynamics of the system is described by Eq. �4� which
depends on five �dimensionless� parameters: 	, which mea-
sures the relative importance of friction to inertia; w, which
is the external load; and the amplitude ys, the frequency �s,
and the initial phase mismatch �s of the oscillatory input
motion.

Instead of embarking on a full study of the phase diagram
of this system, we focus on specific cases of the average
rectified motion. Following Refs. �15,16�, we seek pairs of
period steady-state solutions �u* ,v*= u̇*� such that

u*�� + 2�n/�s� = u*��� ± 2�m , �7�

v*�� + 2�n/�s� = v*��� , �8�

where m and n are integer numbers. We also focus on the
upward motion of the load or positive average velocities. The
average pinion velocity in this case can be deduced from
v*=m�s /n: namely,

VP =
m

n
	��p

2�

 . �9�

The steady-state solutions of Eqs. �7� and �8� are only valid
for specific values of the initial conditions u0 and v0, and
therefore the initial values must be tuned to ensure VP
0. In
Fig. 2, we show the basin of attraction for solutions with
VP
0, using ys=1.4, �s=2/3, �s=0, 	=0.5, m=n=1, and
w=0.185. The values of the initial conditions u0 and v0 have
been changed by increments of 0.02 across the phase plane.

Equation �9� shows that the pinion velocity for the recti-
fied motion could only acquire distinct values set by the two
integers m and n, and the overall scale is set by the vibration
frequency of the rack �p and the wavelength of the corruga-
tions �. It is interesting that the driving parameters can be
tuned to set the integers m and n. Figure 3 shows the param-
eters ys and �s, which lead to m=n=1, using x0=0, ẋ0=0,
	=0.5, and w=0.1. In these calculations the steps of ys and
�s are taken to be 0.01. Throughout the numerical calcula-
tions, we noticed that a large part of the parameter space
leads to chaotic behavior. These states were unwanted for our
purposes and have been systematically avoided by checking
the negativeness of the largest Lyapunov exponent of the
system �17�.

The external load against which the pinion is doing work
puts a significant impediment on the motion, and one won-
ders if there is a critical value for the load that this device
can tolerate, similar to the problem of uniformly moving
racks �6�. To obtain this limiting value, we can average the
equation of motion over the time interval 2�n /�s, which
yields −w−	v*=sin u*. This result necessitates
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FIG. 2. Basin of attraction for ys=1.4, �s=2/3, �s=0, 	=0.5,
m=n=1, and w=0.185. These initial conditions lead to VP
0.
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W �
RF

r
	1 − 	�s

m

n

 . �10�

However, this is only an upper bound for the critical load and
one needs to do more to find stronger criteria. We can make
an attempt towards this end by using the ansatz u*�u0
+v*�+�n /�s sin��s� /n� and the identity exp�iz cos �
=�k=−�

� ikJk�z�exp�ik� to expand the sinus in terms of Bessel
functions. Using these, a stronger condition of

W �
RF

r
�Jn	n�

�s

 − 	�s

m

n
� �11�

can be obtained. Our numerical calculations with ys=1.4,
�s=2/3, �s=0, 	=0.5, and m=n=1 show that the upward
motion of the load ceases at w=0.192, consistent with our
analytical estimate of Eq. �11�, which yields w�0.249 using
J1�� /�s��0.582.

The value of the critical load is essentially set by the
amplitude of the lateral Casimir force F. We can estimate
this quantity for the specific geometry of our rack and cylin-
drical pinion by using the corresponding Casimir interaction
between two parallel corrugated plates and the proximity
force approximation �PFA� �18�. For a cylinder of radius R
located at a �nearest� distance H from a plate, it has been
shown recently that this approximation is reasonably accu-
rate for H�R �19,20�. Using the PFA for the lateral Casimir
force between a pinion of length L and corrugation amplitude
a1 and a rack of corrugation amplitude a2, we find

F =
��2�ca1a2LR1/2

�H9/2 �
1

� ds

s5�s − 1
J	H

�
s
 , �12�

provided a1, a2�H. In this equation J�u� is the coupling
function presented in Ref. �14�. This result shows a strong
power-law behavior at small values of H followed by an
exponential decay at large H with the length scale being set
by �. Figure 4 shows the value of the amplitude F as a
function of the shortest distance between the rack and the
pinion for various values of the wavelength and cylinder
radius. One can see that the amplitude and thus the maxi-
mum load of the system strongly depend on the separation.
While typical values for F are in the pN range for the pa-
rameter values we chose, its linear dependence on the length
of the pinion, L, can be used to strengthen the hold of the
pinion and make it capable of enduring a higher load.

The fact that the system can spontaneously break symme-
try and choose one direction is fascinating and far from
trivial. Note that the traditional theory of ratchets always
relies on some kind of asymmetry in the structure of the
system �such as the two unequal halves of an oscillating
sawtooth potential �9�� to break the symmetry and guide the
rectification process. This means that the nonlinear structure
of the dynamics of this system, together with the presence of
the inertial term, has made spontaneous symmetry breaking
possible.

In conclusion, we have studied the dynamics of a setup of
rack and pinion that are coupled by the lateral Casimir force
and shown that the coupling can rectify an oscillatory motion
in certain areas of the parameter space of the system. This
study could shed some light on the novel possibilities that
could be available at small scales in systems that are pow-
ered by the Casimir force. This method of force transduction
could in principle help solve the wear problem in nanoscale
mechanics, which makes such studies worthwhile.

This work was supported by EPSRC under Grant No.
EP/E024076/1 �R.G.�.
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FIG. 3. Values of ys and �s which lead to a net rotation of the
pinion described by the velocity given in Eq. �9� with m=n=1.
Here x0=0, ẋ0=0, 	=0.5, and w=0.1.
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FIG. 4. �Color online� Amplitude of the lateral Casimir force as
a function of the gap size for perfect metallic boundaries, corre-
sponding to a1=a2=10 nm and L=10 �m, for different values of
radius and corrugation wavelength. Note that for the case of
R=0.2 �m �dotted curve�, the larger separations in the plot are
approaching the limit of validity of the PFA.
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